Решение проблем ЭМС

e-mail: problemaEMC@yandex.ru

www.problemaemc.narod.ru

 
ЭМП
Электромагнитные помехи \ Сценарии воздействия электромагнитных помех на аппаратуру связи

Публикации и статьи, посвященные вопросам защиты от электромагнитных помех:

  1. Сценарии воздействия электромагнитныхпомех на аппаратуру связи. Автор В.С.Вербин

 

Сценарии воздействия электромагнитных помех на аппаратуру связи


1. Искажение сигналов во внешних информационных цепях


Можно выделить две основных причины возникновения кондуктивных помех в информационных цепях:

  1. действие индуктивных электромагнитных помех, наводящих кондуктивные помехи в информационных цепях (рис. 1а);
  2. наличие гальванической связи между подверженной влиянию цепью и источником внешних помех (кондуктивный механизм). В качестве такой гальванической связи очень часто выступает общее для различных устройств сопротивление заземления: потенциал, созданный падением напряжения на сопротивлении заземления, оказывается приложенным к корпусу аппаратуры и, через сопротивления между входными цепями этой аппаратуры и корпусом, прикладывается к информационным цепям (рис. 1б).

Кондуктивные помехи, появившись в проводных коммуникациях, достигают входов аппаратуры. Далее механизм воздействия помех зависит от их частот.


Рисунок 1. Возникновение помех в линии связи: а) - ЭДС помехи Eп создается под действием внешнего электромагнитного поля (индуктивный механизм), б) - напряжение Uп создается при протекании тока помехи Iп через общее для устройств 2,3 сопротивление заземления Z (кондуктивный механизм).

Особенно опасны составляющие спектра помехи, лежащие в той же полосе частот, что и рабочие сигналы. Обычно такие составляющие беспрепятственно пропускаются входными фильтрами и далее обрабатываются так же, как если бы они были полезными сигналами. В результате повышается число ошибок в канале передачи информации. В отдельных случаях может происходить даже физическое повреждение элементов сигнального тракта.

Сравнительно низкочастотные составляющие спектра помехи, лежащие вне рабочей полосы частот канала связи, обычно воздействуют на ближайшие к входам схемные элементы. В грамотно спроектированной аппаратуре ими обычно оказываются фильтры и специальные устройства ограничения перенапряжений (разрядники, варисторы и т.п.). В этом случае основной угрозой является возможность физического повреждения этих элементов. Обычно это бывает, если амплитуда помехи значительно превышает ту, на которую защитные элементы были рассчитаны.
Высокочастотные составляющие спектра помехи вне рабочей полосы частот, отличаются тем, что благодаря наличию паразитных индуктивных и емкостных связей оказываются способными "обходить" защитные элементы и проникать глубоко внутрь аппаратуры. Особенно опасно их воздействие на элементы внутренних цифровых схем аппаратуры. Поскольку обмен данными по внутренним системным шинам часто производится без использования протоколов с обнаружением и коррекцией ошибок, искажение только одного бита информации уже способно полностью блокировать работу системы.

2. Искажение сигналов в антенных цепях

Механизм возникновения помех аналогичен индуктивному механизму возникновения помех в проводных коммуникациях аппаратуры связи (рис. 1а): электромагнитное поле помехи индуцирует в антенных цепях ЭДС помехи. Обычно амплитуды помех, наводимых таким образом, малы для того чтобы повредить входные фильтры аппаратуры. Поэтому основную угрозу для приема представляют помехи, значительная часть спектра которых лежит в рабочей полосе частот радиоаппаратуры, т.е. помехи, которые воспринимаются аппаратурой как полезный сигнал.

3. Попадание помех на входы питания аппаратуры


Существует множество механизмов возникновения помех в цепях питания аппаратуры. Это связано с тем, что обычно сеть питания имеет большую протяженность и объединяет самых разных потребителей. Описанные выше для информационных цепей механизмы попадания помех (индуцирование ЭДС внешним полем и проникновение помехи через общее сопротивление) действуют и в этом случае. Кроме того, работа каждого потребителя, включенного в общую сеть питания, вносит искажения в формы кривых тока и напряжения в этой сети. При этом частоты помех могут меняться в очень широких пределах - от десятков и сотен герц (гармоники, а также провалы и выбросы напряжения питания при коммутациях больших нагрузок) до радиочастотных (например, при работе некоторых блоков питания аппаратуры). Постоянное отклонение напряжения и (или) частоты питания от номинальных значений вследствие перегрузки сети, аварийной работы энергосистемы или автономного источника питания также могут рассматриваться как помехи.

Среди низкочастотных помех наибольшую опасность представляют перенапряжения при авариях электропитания. К временной потере работоспособности аппаратуры также приводят полные отключения питания на длительное время. Отказы хорошо спроектированной аппаратуры по причине появления других низкочастотных (до нескольких сотен герц) помех в цепях питания случаются относительно редко. Такая устойчивость объясняется тем, что современные блоки питания аппаратуры обычно представляют собой систему автоматического регулирования (САР), способную поддерживать заданное значение напряжения на выходе даже в случае значительного отклонения формы кривой напряжения на входе от номинальной.

При сдвиге спектра частот помехи в высокочастотную область ее опасность (при той же энергии) обычно возрастает. Для частот до нескольких десятков Мегагерц это объясняется двумя факторами:

  1. Импульсные помехи даже сравнительно небольшой энергии могут иметь значительную амплитуду по напряжению. Действительно, энергия импульса, выделяющаяся на активном сопротивлении, определяется как где u=u(t) - напряжение, r - сопротивление, Т - длительность импульса. Таким образом, при меньшей длительности импульс той же энергии может иметь большую амплитуду. Большие значения пикового напряжения импульса могут приводить к пробою элементов блока питания, не рассчитанных на слишком высокое напряжение. Возникающая при пробое дуга может сохраняться и после окончания импульса, поддерживаемая за счет обычного напряжения питания. В этом случае импульс играет роль лидера.
  2. Динамические характеристики самого блока питания также обуславливают повышение опасности помех в цепях питания с ростом их частоты. Выше уже отмечалось, что современные блоки питания имеют структуру САР, причем с нелинейными элементами. Обычно такая система проектируется в расчете на относительно низкочастотные возмущения на входе. Попадание на вход высокочастотных помех может вызвать нежелательную реакцию системы (резонансные эффекты, автоколебания и т.п.). В результате стабильность напряжения на выходе блока питания может нарушиться, что вызовет отказ аппаратуры.

С дальнейшим ростом частоты помехи (от десятков Мегагерц до гигагерц) большое значение начинают играть паразитные емкостные и индуктивные связи. В результате (как и в случае информационных цепей) составляющие помехи могут, в обход установленных защитных элементов, проникать вглубь аппаратуры и нарушить работу ее цифровых узлов.

4. Протекание токов помех по металлическим корпусам аппаратуры и экранам кабелей

Источников таких помех может быть множество. Заземленные металлические корпуса и шасси аппаратуры, а также экраны кабелей, образуют часть пути стекания в землю токов помех. Внешние электромагнитные поля также наводят токи помех в экранирующих корпусах аппаратуры и экранах кабелей. При электростатическом разряде с тела человека также происходит протекание тока по металлическим конструкциям аппаратуры. Отрицательный эффект протекания таких токов может быть обусловлен индуктивным или кондуктивным механизмом. При индуктивном механизме протекание тока создает магнитное поле, которое, в свою очередь, способно индуцировать ЭДС помехи в близкорасположенных контурах аппаратуры. Во втором случае существенно то, что при протекании токов помех различные точки заземленных металлических частей приобретают различные потенциалы. Поскольку при проектировании аппаратуры все такие точки обычно рассматриваются как эквипотенциальные ("масса"), это может привести к искажению сигналов. Пример того, как протекание тока помехи по экрану коаксиального кабеля способно исказить передаваемый сигнал, приведен на рис. 2. Здесь Zж и Zэ - полные сопротивления жилы и экрана кабеля соответственно (рис 3), Uс - неискаженное напряжение сигнала на входе в кабель, Iп - ток помехи. Легко понять, что реальный сигнал, измеренный на входе аппаратуры, будет уже равен Uс + Iп Zэ.



Рисунок 2 Искажение сигнала в несимметричной цепи под действием тока в экране кабеля

Полные сопротивления металлических частей шасси аппаратуры и экранов кабелей носят индуктивный характер и возрастают (по модулю) с ростом частоты . То же самое справедливо и в отношении коэффициентов паразитных связей между ними и цепями аппаратуры, которые имеют емкостной характер . Поэтому опасность со стороны протекающих по металлическим частям шасси аппаратуры и экранам кабелей токов возрастает с ростом частоты (рис 3).


Рисунок 3 Полные сопротивления жилы и экрана кабеля соответственно

 

5 Воздействие внешних полей на внутренние цепи аппаратуры

Обычно это происходит при отсутствии у аппаратуры экранирующего корпуса, либо когда экранирующие свойства такого корпуса недостаточны. При этом по закону электромагнитной индукции во внутренних контурах аппаратуры наводится ЭДС помехи. Если эта ЭДС помехи достаточно велика (например, выше порога, отделяющего уровень "ноль" от уровня "единица" в цифровых системах), возможно нарушение функционирования аппаратуры. Поскольку коэффициенты индуктивной связи пропорциональны частоте, особенно высокую опасность представляют высокочастотные поля. Принято считать, что относительно низкочастотные поля (не более 20 - 30 МГц) воздействуют, в основном, не на саму аппаратуру, а на ее проводные коммуникации. Лишь на более высоких частотах влияние поля непосредственно на внутренние контуры аппаратуры может оказаться существенным.
Отдельно стоит сказать о действии магнитных полей на устройства, содержащие электронно-лучевые трубки (ЭЛТ). Конструкция таких устройств предусматривает очень точное нацеливание пучка электронов на соответствующую точку люминофора. Как известно, воздействие электрического или магнитного поля приводит к искажению траектории электронов. В результате искажается и изображение на экране, так как электронный пучок попадает в другие точки люминофора. В первую очередь, это сопровождается искажением цвета. Благодаря остаточной намагниченности отдельных элементов устройства, искажения изображения сохраняются некоторое время и после снятия внешнего электромагнитного поля.

Вернуться на страницу ЭМП

10.2003 Designed by Vladimir S.Verbin
Hosted by uCoz